POCKET REFERENCE GUIDE

ELECTRICALC[®] PRO

The *ElectriCalc*[®] *Pro* is an invaluable calculator for today's busy electrical professional. It has intuitively labeled "electrical keys" and conforms to 1996 through 2014 and future National Electrical Codes. The most common NEC tables are now at your fingertips!

The *ElectriCalc*[®] *Pro* instantly solves for:

- Volts, Amps, Volt-Amps, Watts, PF%, and EFF%
- Cu and Al Wire Sizes
- Parallel and Derated Wire Sizes
- Voltage Drop Wire Sizes, and Lengths
- Kilowatt hours and BTU's
- Parallel Resistance
- Grounding Conductors
- Motor FLC
- Fuse/Breaker Sizes
- Conduit Sizes
- And much more!

TABLE OF CONTENTS

GETTING STARTED	4
KEY DEFINITIONS	
Basic Function Keys	4
Mode Set-up Keys	6
Electrical Keys	6
Motor Keys	8
Wire Sizing Keys	
Voltage Drop Keys	9
Grounding Conductor Keys	10
Fuse/Breaker Keys	
Conduit Sizing Keys	11
PREFERENCE SETTINGS	13
BASIC MATH OPERATIONS	
PERCENT CALCULATIONS	14
MEMORY OPERATIONS	14
Using M+	15
Using Memory Storage Keys	
(M1- M9)	15
USING THE ELECTRICALC PRO	
KIRCHHOFF'S LAW	15
Finding Voltage	16
Finding Amps	16
Finding Volt-Amps	17
Finding kW Rating	17
OHM'S LAW	18
Finding Volts	18
Finding Amps	
Finding Resistance (Ohms)	19
MOTOR FUNCTIONS	
Finding Full-Load Current	
Finding Motor Wire Size	
AMPACITY WIRE SIZING	
Wire Sizing	

Wire Sizing Based on Material Type	
Sizing Parallel Conductors	
Finding Derated Wire Size	
VOLTAGE DROP	
Finding Voltage Drop	
Finding Voltage Drop Wire Size	
Finding Voltage Drop Distance	
Finding Voltage Drop Resistance	28
GROUND CONDUCTOR	~~~
WIRE SIZE	29
EQUIPMENT GROUNDING COUNDUCTOR WIRE SIZE	20
FUSE AND CIRCUIT	29
BREAKER SIZE	20
STARTER SIZE	
OVERLOAD PROTECTION SIZE	
CONDUIT SIZE	
Finding Motor Branch-Circuit Wire S	ize
and Conduit Size —	
Same Wire Type and Size	33
Finding Conduit Size —	
Multiple Conductors, Different Wire	Sizes
and Types	34
CONVERTING KILOWATT-HOUR	
AND BTU	
PARALLEL RESISTANCE	36
APPENDIX A —	
DEFAULT SETTINGS	37
APPENDIX B —	
CARE INSTRUCTIONS	38
APPENDIX C —	
ACCURACY/ERRORS, AUTO	
SHUT-OFF, BATTERIES, RESET	39
REPAIR AND RETURN	42

GETTING STARTED

KEY DEFINITIONS

Basic Function Keys

On/C	On/Clear Key — Turns on power, clears the last entry and clears all temporary values.
Off	Off — Turns all power off.
00X 88	Arithmetic operation keys.
(0-9) and (•)	Keys used for entering numbers.
Set	Second Function — Used to access secondary functions.
Stor	Store — Stores values.
Stor (1) - (9)	Storage Registers — Store values in Memory.
Rcl	Recall — Used to recall stored values and settings.
Rci Rci	<i>Memory Clear</i> — Clears M+ and displays total.
Stor ()	M+ — Adds value to Accumulative Memory.

Rci ()	Memory Recall — Displays the value saved in M+.
Set Rcl	Memory Clear (M-R/C) — Clears M+ without changing current display.
%	Percentage — Standard % function.
Set %	x^2 — Squares the value on the display.
0	Backspace Function — Used to delete entries one keystroke at a time.
Set 🗲	\sqrt{x} — Calculates the Square Root of the displayed value.
Set VD%	1/x — Finds the Reciprocal of a number.
Set X	<i>Clear All</i> — Reset all settings, other than preferences to default.
Set -	+/- — Toggles sign of value.
Set +	Pi — Displays value of π (3.1415927).

Mode Set-up Keys

Set 🕂	Prefs — Use to define calculator modes.
Set	10 — Sets calculator to Single-Phase mode.
Set 3	30 — Sets calculator to Three-Phase mode.
Set 2	Amb ° — Enters ambient temperature for finding Wire Sizes.
Set 4	Copper/Aluminum (Cu/Al) — Toggles between Copper and Aluminum Wire.
Set 5	Free Air (FrAir) — Sets calculator to Free Air mode.
Set 6	60°C Wire Insulation — Sets to 60°C Wire.
Set 7	75°C Wire Insulation — Sets to 75°C Wire.
Set 9	90°C Wire Insulation — Sets to 90°C Wire.
Electrical Ke	eys
kilo-	<i>kilo-</i> — Used to identify "kilo-" values.

Set kilo-	<i>milli-</i> — Used to identify "milli-" values.
Amps	Amps — Enters or calculates Amps.
Volts	Volts — Enters or calculates Volts.
VA	Volt-Amps — Enters or calculates Volt-Amps.
Watts	<i>Watts</i> — Enters or calculates Watts.
Set Amps	DC Amps (Idc) — Enters or calculates DC Amps.
Set Volts	DC Volts (Vdc) — Enters or calculates DC Volts.
Set VA	DC Resistance (R) — Enters or calculates DC Resistance in Ohms.
Set Watts	Power Factor (PF%) — Enters or calculates Power Factor.
HPth	Theoretical Horsepower — Enters or calculates Theoretical Horsepower.
Set HPth	Efficiency (Eff %) — Enters or calculates the Power Efficiencies.

(cont'd)

(cont'd)

Set O	<i>Kw-hr</i> ► <i>Btu</i> — Converts Kw-hr to Btu.
Set =	BTU to Kilowatt–Hours (Btu ► Kw-hr) — Converts Btu to Kw-hr.
Set Stor	Parallel Resistance (Par Res) — Calculates total Resistance of Parallel Resistors.
Motor Keys	
Set 8	Ind/Sync/DC — Toggles between Motor Types.
HPmotor	Motor Horsepower — Enters or calculates
	Motor Horsepower.

Wire Sizing Keys

WireSz	Wire Size/Ampacity — Enters or calculates Wire Size. Additional presses show smaller wire size (if Length defined), Ampacity, Circular Mils, and referenced table.
	and referenced table.

Set WireSz	125% Ampacity — Used to calculate Wire Size using 125% of Amps. Also shows Ampacity, Circular Mils and NEC table reference with repeated presses.
ParSz	Parallel Size — Provides Wire Sizes using Parallel Conductors. A second press displays the Ampacity.
Set ParSz	Derated Wire Size (D/R Size) — Calculates Derated Wire Sizes given a number of wires in the raceway. Also shows Adjusted Ampacity, Deration Factor and NEC

Voltage Drop Keys

VD%	Percent Voltage Drop — Toggles between Actual Voltage Drop and Percent Voltage Drop with repeated presses.
Length	Length — Enters or calculates the Length used for Voltage Drop.
	(cont'd)

table reference.

(cont'd)

Wire Resistance (*Wire Res*) — Displays the Wire Resistance per 1,000 Feet.

Grounding Conductor Keys

Grnd	Ground — Displays the Copper and Aluminum grounding electrode sizes given an entered Wire Size. Also shows Wire Circular Mils and NEC reference with additional key presses.
Set Grnd	Equipment Ground (EqGrnd) — Provides the Copper Equipment Ground size given an entered Wire Size. Additional key presses show Aluminum Ground Size and the NEC

Fuse/Breaker Keys

O-Load	Overload Protection
	 Enters a percent
	Overload Factor and
	shows the Overload
	required based on stored
	Amps. The percent
	multiplier is shown on the
	second key press.

reference.

Set O-Load	Motor Type (M-Type) — Displays the current Motor Type for use with Breaker/Fuse sizing. Additional presses toggle between Motor Types.
DEFuse	Dual Element Fuse
Set DEFuse	Single Element Fuse (SEFuse)
InvTime	Inverse Time Breaker
Set InvTime	Instantaneous Trip Circuit Breaker (InsTrip) — Displays the minimum Amp rating and percent

multipier.

Conduit Sizing Keys

#THW #THHW;
#XHH #XHHW;
#THHN #THWN

Number of Wires —

Used to enter or calculate the Number of Wires in a raceway and calculate Wire Area. Also shows total Number of Wires and the total area of all wires entered.

Conduit Size — Enters or calculates Conduit Size. Additional presses show the total number of Wires, Percent Fill, Total Wire Area and remaining Wire Area when Conduit Size is calculated.

Conduit Type (Cond Type) — Defines Conduit Type by entering the number correlating to the Types shown below. Repeated presses of Sel Conds? also toggles through the Conduit Types.

1) EMT	7) LFMC
2) ENT	8) RMC
3) FMC	9) P-80
4) IMC	10) P-40
5) LFNB	11) P-A
6) LFNA	12) P-EB

PREFERENCE SETTINGS

Press Sol, then 🖶 to access the Preferences. Continue pressing 🖨 to toggle through different settings. Press 🗗 or 🖨 keys to toggle between options. Press any other key to exit Preferences.

KEYSTROKE	DISPLAY
Set 🕂 (Prefs)	
(NEC Code)	NEC 2014
0	NEC 1996
0	NEC 1999
0	NEC 2002
0	NEC 2005
0	NEC 2008
0	NEC 2011
(repeats options)	NEC 2014
Second press of 🖶:	
(Ambient	
Temperature Units)	AMB° 30. °C
0	AMB° 86. °C
(repeats options)	AMB° 30. °C
Third press of 🚼:	
(Length Units)	FEET 1.
0	MET 1.
(repeats options)	FEET 1.

BASIC MATH OPERATIONS

This calculator uses standard chaining logic, calculating values in order entered.

KEYSTROKE	DISPLAY
3028	5.
3828	1.
3828	6.
3028	1.5

PERCENT CALCULATIONS

The we key can be used for finding a given percentage of a number or for working add-on, discount or division percentage calculations.

KEYSTROKE	DISPLAY
355X15%	53.25
2508	
605%	266.25
25 - 5%	23.75
$100 \div 50\%$	200.

MEMORY OPERATIONS

The Cumulative Memory is located above (0). Single value storage positions can also be found within digits (1) through (9). Using M+

KEYSTROKE	DISPLAY
1. Add to Memory:	
3 5 5 Stor 0 (M+)	M+ 355. 🖾
2 5 5 Set	
Stor (<i>M</i> +)	M+ –255.⊠
2. Recall Total:	
Rcl	TTL 100. 🖾
Rci	AVG 50. 🖾
Rci	CNT 2. 🖾
3. Display/Clear Memory:	
RCI RCI	100.
Using Memory Storage K	leys (M1- M9)
KEYSTROKE	DISPLAY
175 Stor 1	M-1 175.
Off On/C	0.
Rcl	M-1 175.

USING THE ELECTRICALC PRO

KIRCHHOFF'S LAW

The *ElectriCalc Pro* can easily find Volts, Amps, VA, Watts, HP (theoretical), Efficiency and Power Factor.

Finding Voltage

Find the Voltage supply to a 1Ø load drawing 14,605 VA and 115 Amps.

KEYSTROKE	DISPLAY
On/C On/C	0.
1. Set to 1-Phase: Set 1 (1Ø)	1ø 1 PH
2. Enter VA: 14605 VA	VA 14,605.
3. Enter Amps:	AMPS 115.
4. Solve for Volts: Volts	VOLT 127.

Finding Amps

What is the current for a load drawing 8,250 VA on a 240V, 3Ø circuit?

KEYSTROKE	DISPLAY
On/C On/C	0.
1. Set to 3-Phase: Set 3 (3Ø)	3ø 3 PH
2. Enter VA: 8250 VA	VA 8,250.
3. Enter Volts: (2)(4)(0) Volts	VOLT 240.
4. Solve for Amps: Amps	AMPS 19.846416

Finding Volt-Amps

What is the VA rating for 22 Amp, 1Ø circuit?	r a 120 Volt,
KEYSTROKE	DISPLAY
On/C On/C	0.
1. Set to 1-Phase: Set 1 (1Ø)	1ø 1 PH
2. Enter Volts:	VOLT 120.
3. Enter Amps: (2) (2) Amps	AMPS 22.
4. Solve for Volt-Amps: VA	VA 2,640.

Finding kW Rating

What's the kW rating for a 90 Amp, 208V, 3Ø boiler with 100% Power Factor?

KEYSTROKE	DISPLAY
On/C On/C	0.
1. Set to 3-Phase: Set (3) (3Ø)	3ø 3 PH
2. Set Power Factor:	PF% 100.
3. Enter Amps: 90 Amps	AMPS 90.

(cont'd)

KEYSTROKE	DISPLAY
4. Enter Volts:	
(2)(0)(8) Volts	VOLT 208.

5 Solve for kW. kilo- Watts

KW 32 423991

OHM'S LAW

The FlectriCalc Pro uses Ohm's Law solve for DC Voltage, Current, or Resistance

Finding Volts

The Current in a circuit is 0.0125 Amps. and the total Resistance is 480 Ohms Find the Voltage.

KEYSTROKE	DISPLAY
On/C On/C	0.
1. Enter Current: • 0 1 2 5 Set Amps (Idc)	ldc 0.0125 A
2. Enter Resistance: (4)(8)(0) Set VA (R)	OHMS 480.
3. Find Voltage: Set Volts (Vdc)	Vdc 6. v
Finding Amps	

A 120k electrical resistor is plugged into a 12 volt circuit Find the Current

KEYSTROKE	DISPLAY
On/C On/C	0.
1. Enter Resistance 120 kilo- Set VA (R)	е: КОНМ 120.
2. Enter Voltage: 12 Set Volts (Vdc)	Vdc 12. v
3. Find Current: Set Amps (Idc) Finding Resistance	Idc 0.0001 A
	,
An electrical circuit Volts has a Current Find the total Resis	of 14.6 Amperes.
KEYSTROKE	DISPLAY
On/C On/C	0.
1. Enter Voltage: 240 Set Volts (Vdc)	Vdc 240. v
2. Enter Current:	
Set Amps (Idc)	Idc 14.6 A
3. Find Resistance: Set VA (R)	OHMS 16.438356

MOTOR FUNCTIONS

The *ElectriCalc Pro* can calculate the Full-Load Current (Amps) of a motor, based on Phase, Voltage and Motor (Synchronous, Induction, or DC) Horsepower using NEC Tables 430.247, 430.248 and 430.250.

Finding Full-Load Current

A 2 HP Induction motor operates on 230 Volt, Single-Phase power. What is the Full-Load Current for this motor?

KEYSTROKE	DISPLAY
On/C On/C	0.
1. Set to 1-Phase: Set 1 (1Ø)	1ø 1 PH
2. Enter Volts: (2) (3) (0) Volts	VOLT 230.
3. Enter HP: (2) (HPmotor) * Press Set) (8) until IND is di upper left area of the displa	
4. Find Full-Load Currer	nt: FLC 12. A
Finding Motor Wire Size	1 EO 12. A
Find the Wire Size requi	red to connect

Find the Wire Size required to connect a continuous run, 3Ø, 10 HP Induction motor into a 230V circuit.

KEYSTROKE	DISPLAY
On/C On/C	0.
1. Set to 3-Phase: Set 3 (3Ø)	3ø 3 PH
2. Set to 60° C: Set 6 (60°)	3Ø 60 3 PH
3. Set to Copper (if I Set (4) (Cu/Al)	necessary): 3Ø 60 Cu 3 PH
4. Enter Volts: 2 3 0 Volts	VOLT 230.
5. Enter HP: () () (HPmotor * Press Set (8) until IND upper left area of the d	
6. Find Full-Load Cu Amps	FLC 28. A
7. Find 125% Ampact Set WireSz (125%)	ity Wire Size: AWG 8 CU WIRE SIZE 125%
AMPACITY WIRE S	IZING

Wire Sizing is based on Ampacity requirements used in NEC Tables 310.15(B)(16) and 310.15(B)(17).

Wire Sizing

Wiring is being installed for a 240V, 1Ø system rated at 30 kVA. What is the 60° C Copper Wire Size?

(cont'd)

-

(com u)	
KEYSTROKE	DISPLAY
On/C On/C	0.
1. Set to 1-Phase:	
Set (1Ø)	1ø 1 PH
2. Set to 60° C:	
Set 6 (60°)	1Ø60 1PH
3. Set to Copper (if	necessary):
Set 4 (Cu/Al)	1Ø60 Cu 1PH
4. Enter kVA:	
30 kilo- VA	KVA 30.
5. Enter Volts:	
(2)(4)(0) Volts	VOLT 240.
6. Find Amps:	
Amps	AMPS 125.
7. Find Wire Size:	
WireSz AW	/G 0 CU wire size
Wire Sizing Based of	on Material Type
Find the Wire Size	for a 75°C Copper
Wire carrying a 3Ø	
What is the equival	ent Aluminum
Wire Size?	
KEYSTROKE	DISPLAY

KEYSTROKE	DISPLAY
On/C On/C	0.
1. Set to 3-Phase: Set (3) (3Ø)	3ø 3 PH
2. Set to 75° C: Set 7 (75°)	3Ø 75 3 PH

3. Set to Copper (if necessary): Set 4 (Cu/Al) 3ø 75 cu 3 PH

4. Enter Amps: (2)(6)(5) Amps

AMPS 265.

5. Find Wire Size: WireSz AWG 300 CU wire size

6. Change to Aluminum:

Set (4) (Cu/AI) AWG 400 AL WIRE SIZE

Sizing Parallel Conductors (Free Air)

What size 60°C insulated Copper Wire is required for a single conductor carrying a 500 Amp load in a Free Air environment (30°C Ambient Temperature.)? What size for two Parallel conductors?

KEYSTROKE	DISPLAY
On/C On/C	0.
1. Set to 60° C: Set 6 (60°)	60 O .
2. Set to Copper (if nec Set (4) (Cu/Al)	<i>essary):</i> 60 Cu 0.
3. Set to Free Air mode Set 5 (FrAir)	: 60 Cu FrAir 0.
4. Enter Amps: 500 Amps	AMPS 500.
5. Find Wire Size for or Wiresz AWG 500	ne conductor: CU wire size (cont'd)

KEYSTROKE	DISPLAY
	for two conductors: R 000 CU wire size
7. Exit Free Air M Set 5 On/C	lode and Clear: 60 Cu 0.
Finding Derated W	/ire Size
A circuit was built wire connecting a to a 240 Volt, 3Ø Temperature is 50 Derated Wire Siz current-carrying T installed in the radi	source. Ambient 0°C. What is the e required if eight THHN wires are
KEYSTROKE	DISPLAY
CINC ON/C	DISPLAY 0.
	0.
On/C On/C 1. Set to 3-Phase	0.
On/C On/C 1. Set to 3-Phase Set Set 3 (3Ø) 2. Set to 60° C: C:	0. 3ø 3 PH 3ø 60 3 PH
On/C On/C 1. Set to 3-Phase Set 3 (3Ø) 2. Set to 60° C: Set 6 (60°) 3. Set to Copper	0. 3ø 3 PH 3ø 60 3 PH (<i>if necessary</i>): 3ø 60 Cu 3 PH os:
On/C On/C 1. Set to 3-Phase Set 3 (3Ø) 2. Set to 60° C: Set 6 (60°) 3. Set to Copper Set 4 (Cu/Al) 4. Enter Volt-Amp	0. 3ø 3 PH 3ø 60 3 PH (<i>if necessary</i>): 3ø 60 Cu 3 PH os:

7. Set to 50° C Ambient Temperature: (5)(0)Set (2)

(Amb°) Amb AMB° 50. °C

8. Find Derated Wire Size:

8 Set ParSz

(D/R Size) D/R 500 CU WIRE SIZE

9. Reset Ambient Temperature and Clear:

(3) (0) Set (2) On/C

3Ø 60 Cu **O**.

VOLTAGE DROP

The *ElectriCalc Pro* uses Resistance values found in NEC Table 8 Chapter 9 to determine Voltage Drop, Wire Lengths or Wire Sizes given a maximum Voltage Drop percentage.

Finding Voltage Drop

You are installing 175 Feet of 75°C, #8 THW branch circuit Copper conductors to supply an 11A load on a 208V 1Ø system. What is the source Voltage Drop at the load?

KEYSTROKE	DISPLAY
On/C On/C	0.
1. Set to 1-Phase: Set 1 (1Ø)	1ø 1PH
2. Set to 75 ° C: Set 7 (75°)	1 Ø 75 1 PH (cont'd)

KEVSTROKE DISPLAY 3. Set to Copper (if necessary); Set (Cu/Al) 1 0 75 Cu 1 PH 4. Enter Amps: AMPS 11 5 Enter Volts 208 Volts VOLT 208 6. Enter Lenath: (1)(7)(5) Length FEET 175 7 Enter Wire Size: 8 WireSz AWG 8 CU WIRE SIZE 8. Solve Voltage Drop: VD% DROP 30 V 9. Solve percent Voltage Drop: VD% DROP 14 % V

Finding Voltage Drop Wire Size

A 20 Amp, 3Ø 208 Volt load will be located 175 Feet away from the source. Assuming a 3% allowable Voltage Drop, what is the size of 75°C conductor required for this branch circuit?

KEYSTROKE	DISPLAY
On/C On/C	0.
1. Set to 3-Phase: Set (3) (3Ø)	3Ø PH
2. Set to 75° C: Set 7 (75° C)	3Ø 75 3 PH

3. Set to Copper (if necessary); Set (Cu/Al) 20 75 Cu 3 PH 4 Enter Amps 20 Amps AMPS 20 5 Enter Volts: 208 Volts VOLT 208 6 Enter Length (1)(7)(5) Length **FEET 175** 7 Enter allowable VD%: 3 VD% DROP 30% v 8 Find Wire Size WireSz AWG & CIL VD WIRE SIZE

Finding Voltage Drop Distance

How far from a Three-Phase 240 Volt source can you install a 15 Amp load using 60°C #10 Copper branch circuit conductors? Assume a 3% allowable Voltage Drop.

KEYSTROKE	DISPLAY
On/C On/C	0.
1. Set to 3-Phase: Set (3) (3Ø)	3ø 3 PH
2 Set to 60° C: Set 6 (60°)	3Ø 60 3 PH
3. Set to Copper (if ned Set 4 (Cu/Al)	cess <i>ary):</i> 3Ø 60 Cu 3 PH

(cont'd)

(cont'd)

(cont'd)	
KEYSTROKE	DISPLAY
4. Enter Amps:	AMPS 15.
5. Enter Volts: (2)(4)(0) Volts	VOLT 240.
6. Enter Wire Size:	G 10 CU WIRE SIZE
7. Enter 3% allowab	DROP 3.0 % v
8. Find distance: Length	FEET 234.86987
Finding Voltage Drop	Resistance
What is the Resistant of #2 90° C Copper	
of #2 90° C Copper	conductor?
of #2 90° C Copper	conductor? DISPLAY
of #2 90° C Copper KEYSTROKE On/C On/C 1. Set to 90° C:	Conductor? DISPLAY 0. 90 0.
of #2 90° C Copper KEYSTROKE On/C On/C 1. Set to 90° C: Set 9 (90°) 2. Set to Copper (if Set 4 (Cu/Al) 3. Enter Wire Size:	conductor? DISPLAY 0. 90 0. necessary):
of #2 90° C Copper KEYSTROKE On/C On/C 1. Set to 90° C: Set (9 (90°) 2. Set to Copper (if Set (4) (Cu/Al) 3. Enter Wire Size:	DISPLAY 0. 90 0. necessary): 90 Cu 0. G 2 CU WIRE SIZE

GROUND CONDUCTOR WIRE SIZE

KEVOTDOKE

The *ElectriCalc Pro* uses NEC Table 250.66 to find the Grounding Electric Conductor Size for an entered Feeder Size.

Find the Grounding electrode conductor Wire Size required when a 2/0 Copper service-entrance conductor is being used.

KEYSTROKE	DISPLAY
On/C On/C	0.
1. Enter Wire Size and Wire Size: () () Grnd GRND	
2. Find Aluminum size: Grnd GRND	2 AL WIRE SIZE

EQUIPMENT GROUNDING COUNDUCTOR WIRE SIZE

The ElectriCalc Pro uses an external amperage to find the Equipment Grounding conductor based on NEC Table 250.122.

Find the Equipment Grounding conductor size required when the circuit breaker is rated at 45 Amps.

(cont'd)

				v
LU I	10	~	LA	LΤ.

KEYSTROKE

0.

1. Find Equipment Ground Wire Size:

Grnd (EqGrnd) EQPG 10 CU WIRE SIZE

2. Find Aluminum size: Grnd EQPG 8 AL WIRE SIZE

FUSE AND CIRCUIT BREAKER SIZE

Fuse and Breaker sizing is determined by NEC Table 430.52. Once the Motor Type is defined via Set O-Locd, a Full-Load Current amperage value can be used to find the Fuse Breaker Sizes.

What is the Dual Element Fuse size for a 230 Volt, 3-Phase, 50 HP Induction motor?

KEYSTROKE	DISPLAY
On/C On/C	0.
1. Set to 3-Phase: Set (3) (3Ø)	3ø 3 PH
2. Enter Volts: (2) (3) (0) Volts	VOLT 230.
3. Enter HP: 5 0 (HPmotor	IND* 50. HP
* Press Set (8) until IND is displayed in the upper left area of the display.	

4. Find Full-Load Cu Amps	urrent: FLC 130. A
5. Find Dual Elemen DEFuse	
STARTER SIZE	
What size NEMA St required for a 575 V Induction motor?	
KEYSTROKE	DISPLAY
On/C On/C	0.
1. Set to 3-phase: Set 3 (3Ø)	3ø 3 PH
2. Enter Volts: 5 7 5 Volts	VOLT 575.
3. Enter HP: 2 0 HPmotor * Press Set 8 until IND upper left area of the o	
4. Solve for Starter Set HPmotor (Starter)	
OVERLOAD PROTE	ECTION SIZE
What Overload Prot	action device size

What Overload Protection device size is required for an Induction motor with a nameplate rating of 19.2 Amps and a 1.0 service factor? What is the required Overload at 125% (for a 1.15 service factor)?

(cont'd)

(cont'd)	
KEYSTROKE	DISPLAY
On/C On/C	0.
1. Enter nameplate (1902 Amps	Current: AMPS 19.2
2. Find Overload siz	•••
3. Display percent u O-Load	sed: %FLC 115.%
4. Find 125% Load:	AMPS 24.01
5. Display percent u O-Load	sed: %FLC 125.%
6. Reset Overload ra	

CONDUIT SIZE

The *ElectriCalc Pro* can calculate the size of Conduit required when running single or multiple Wires using the condsz key and the calculator's internal tables. To select a specific Conduit Type, enter the corresponding number of the Conduit as shown below and then press Set Condsz.

- 1) EMT 4) IMC 7) LFMC 10) P-40
- 2) ENT 5) LFNB 8) RMC 11) P-A
- 3) FMC 6) LFNA 9) P-80 12) P-EB

Finding Motor Branch-Circuit Wire Size and Conduit Size — Same Wire Type and Size

What size THHN Copper Wire and RMC Conduit are needed to connect a 10 HP 1Ø Induction motor to a 115 Volt source?

KEYSTROKE	DISPLAY
On/C On/C	0.
1. Set to 1-Phase: Set 1 (1Ø)	1ø 1 PH
2. Set to 60° C: Set (60°)	1Ø60 1 PH
3. Set to Copper (if ne Set 4) (Cu/Al)	cessary): 1 Ø 60 Cu 1 PH
4. Enter Volts:	VOLT 115.
5. Enter Horsepower: () () (HPmotor * Press Set (8) until IND is upper left area of the disp	
6. Display Full-Load A	трs: FLC 100. А
7. Find Wire Size at 12 Set WireSz (125%)	25% Ampacity: AWG 0 CU WIRE SIZE 125%
8. Find Wire Ampacity WireSz Ø1	25.0 WIRE A125%

(cont'd)

KEYSTROKE

 9. Enter Conduit Type and find Conduit Size: (8) Set Condsz (Cond Type) RMC 1.25 in COND SIZE 		
10. Find total number of Wires:		
CondSz 2. TTL WIRES		
11. Find Conduit Fill Percent: CondSz FILL 24.3 % COND		
12. Find actual Fill Area: CondSz FILL 0.3710 TTL WIRE AREA		
13. Find Remaining Area: CondSz REM 0.1021 WIRE AREA		
Finding Conduit Size —		

Multiple Conductors, Different Wire Sizes and Types

Three 1/0 THWN conductors and one #2 XHHW conductor are to connect to a panel board using a single Conduit. What is Conduit Size needed and actual Fill Area?

KEYSTROKE	DISPLAY	
On/C On/C	0.	
1. Enter Conduit Type: 3 Set Condsz (Cond Type)	C NONE COND	
2. Enter first Wire Size: (0) Wiresz* AWG 0 CU wire size		

3. Enter number of 3	THWN Wires: THHN 3. wires
4. Enter second Wir	e Size:
(2) WireSz * AW	G 2 CU wire size
5. Enter number of 2	XHHW Wires: XHHW 1. WIRE
6. Find Conduit Size	e:
CondSz FMC	1.50 in cond size
7. Find total number	r of Wires:
CondSz	4. TTL WIRES
8. Find Conduit Fill I	Percent:
CondSz	FILL 36.1 % COND
9. Find actual Fill Ar	<i>'ea:</i>
CondSz FILL 0.67	711 ttl wire area
10. Find Remaining	Area:
CondSz REM	0.0717 wire area
CONVERTING KIL AND BTU	OWATT-HOUR
Find the equivalent 3.5 kilowatt-hour rat	
KEYSTROKE	DISPLAY
On/C On/C	0.
1. Enter kilowatt hou	urs:
3. 5	3.5

2. Find equivalent BTU: Set (●) (Kw-hr ► Btu) BTU 11,953.552

(cont'd)

POCKET REFERENCE GUIDE - 35

What is the kilowatt-hour rating for a 4,500 BTU heater?

KEYSTROKE	DISPLAY
On/C On/C	0.
1. Enter BTU rating:	4,500.
2. Find equivalent kilo Set	watt hours: KW-H 1.3176
PARALLEL RESISTA	NCE
Find the equivalent Re 10 Ohm, 20 Ohm, and resistors placed in par	l 50 Ohm
KEYSTROKE	DISPLAY
On/C On/C	0.
1. Enter first Resistor: 10 Set Stor (Par Res)	P-RS 10.
2. Enter second Resis 2 0 Set Stor (Par Res)	tor: -RS 6.6666667
3. Enter third Resistor	-
(Der Res)	-RS 5.8823529
Note: The total is recalcul additional Resistor value e	

APPENDIX A — DEFAULT SETTINGS

After a Clear All (Set X), your calculator will return to the following settings:

STORED VALUES	DEFAULT VALUE
Insulation Rating	60° C
Wire Material	Copper
Phase	3Ø
Ambient	30° C (86° F)
Temperature	30 0 (00 1)
Volts	240V
Voltage Drop %	3%
Power Factor %	100%
Efficiency %	100%
Motor Type	Induction
Conduit Type	EMT
Fuse/Breaker	Squirrel Cage
Motor Type	non Design E
Overload FLC%	115%
Free Air Mode*	Off

* This setting will also return to its default upon turning the calculator off and back on.

If you replace your batteries or perform a Full Reset* (Press Off, hold down X and press On/C) your calculator will return to the following settings (in addition to those listed above):

(cont'd)

DEFAULT VALUE
2014
°C
FEET ton located

* Depressing the Reset button located above the Condsz key will also perform a Full Reset.

APPENDIX B — CARE INSTRUCTIONS

Please follow the guidelines listed in this section for proper care and operation of your calculator. Not following the instructions listed below may result in damage not covered by your warranty. Refer to the *Warranty* section on page 61 of the *User's Guide* for more details..

Do not expose calculator to temperatures outside the operating temperature range of $32^{\circ}F$ – $104^{\circ}F$ ($0^{\circ}C$ – $40^{\circ}C$).

Do not expose calculator to high moisture such as submersion in water, heavy rain, etc. APPENDIX C — ACCURACY/ERRORS, AUTO SHUT-OFF, BATTERIES, RESET

Accuracy/Errors

Accuracy/Display Capacity — Your calculator has an eight-digit display. You may enter or calculate values up to 99,999,999. Each calculation is carried out internally to 12 digits.

Errors — When an incorrect entry is made, or the answer is beyond the range of the calculator, an error message will display. To clear an error condition, press the **On/C** button once. At this point, you can determine what caused the error and re-key the problem.

Error Codes

ERROR TYPE
Overflow; an- swer too large to display
Invalid entry
Power Factor (PF) or Ef- ficiency (EFF) calculated above 100% (cont'd)

/ .	1.75
(cont	(d)

nonE	Unable to calculate or not available
HP Error	Invalid Horse- power entry per NEC table
FULL Error	Entered or calculated more than 15 different Wires Sizes
EROM Error	Bad EPROM
MATH Error	Math error (i.e., divide by zero)

AUTO SHUT-OFF

Your calculator is designed to shut itself off after about 8-12 minutes of non-use.

BATTERY

The *ElectriCalc Pro* uses one CR2016 battery. Should your calculator display become dim or erratic, replace the battery.

NOTE: Please use caution when disposing of your old battery as it contains hazardous chemicals. Replacement batteries are available at most discount or electronics stores. You may also call Calculated Industries at 1-775-885-4900 or go to www.calculated.com.

Battery Replacement Instructions

While the calculator is off, turn the calculator over and use a #1 Phillips screwdriver to remove the battery holder screw located near the center at the top. With the screw removed, pull battery holder out, remove old battery, and slide new battery into holder.

The negative side of the battery should be facing you as you insert the battery holder into the calculator. Replace screw using a #1 Phillips screwdriver.

RESET

If your calculator should ever "lock up," press Reset — a small hole located below the Off key — to perform a total reset.

REPAIR AND RETURN

RETURN GUIDELINES

- Please read the *Warranty* in the User's Guide to determine if your Calculated Industries product remains under warranty before calling or returning any device for evaluation or repairs.
- If your product won't turn on, check the battery as outlined in the User's Guide.
- If you need more assistance, please go to the website listed below.
- If you believe you need to return your product, please call a Calculated Industries representative between the hours of 7:00am to 4:30pm Pacific Time for additional information and a Return Merchandise Authorization (RMA).

Call Toll Free: 1-800-854-8075 Outside USA: 775-885-4900 www.calculated.com/warranty

LEGAL NOTES

Software copyrighted and licensed by Calculated Industries, Inc., 2014.

User's Guide copyrighted by Calculated Industries, Inc., 2014. ElectriCalc® Pro is a trademark and Calculated Industries® is a registered trademark of Calculated Industries, Inc. © 2014.

ין כאוכעואדפס CALCULATED

4840 Hytech Drive Carson City, NV 89706 U.S.A. 1-800-854-8075 Fax: 1-775-885-4949 E-mail: info@calculated.com www.calculated.com

ALL RIGHTS RESERVED Designed in the U.S.A.

ALL RIGHTS RESERVED Designed in the U.S.A. Printed in China

J_J_ CALCULATED

Designed in the United States of America.

PRG5070E-B